These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 3D Porous Co3O4/MXene Foam Fabricated via a Sulfur Template Strategy for Enhanced Li/K-Ion Storage.
    Author: Chang X, Zhu Q, Zhao Q, Zhang P, Sun N, Soomro RA, Wang X, Xu B.
    Journal: ACS Appl Mater Interfaces; 2023 Feb 15; 15(6):7999-8009. PubMed ID: 36719841.
    Abstract:
    Co3O4 is a potential high-capacity anode material for lithium-ion batteries (LIBs) and potassium-ion batteries (PIBs), but the poor electrical conductivity and large volume fluctuations during long-term cycling severely limit its cycle durability and rate capabilities, especially for PIBs with large K-ion size. Here, we propose a sulfur template route to fabricate an integral 3D porous Co3O4/MXene (Ti3C2Tx) foam using simple vacuum co-filtrating an aqueous dispersion of Co3O4, S and MXene followed by calcining to remove the S template. The 3D porous structure can easily accommodate the large volume changes of Co3O4 while maintains electrode structural integrity, allowing to realize outstanding long-term cycle stability when tested as anodes for both LIBs (620.4 mA h g-1 after 1000 cycles at 1 A g-1) and PIBs (134.1 mA h g-1 after 1000 cycles at 0.5 A g-1). The high metallic conductivity of the 3D porous MXene network further facilitates the electron/ion transmission, resulting in an improved rate capability of 390 mA h g-1 at 13 A g-1 for LIBs and 125.3 mA h g-1 at 1 A g-1 for PIBs. The robust performance of the 3D porous Co3O4/MXene foam reflects its perspective as a high-performance anode material for both LIBs and PIBs.
    [Abstract] [Full Text] [Related] [New Search]