These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cytoplasmic HMGB1 induces renal tubular ferroptosis after ischemia/reperfusion.
    Author: Zhao Z, Li G, Wang Y, Li Y, Xu H, Liu W, Hao W, Yao Y, Zeng R.
    Journal: Int Immunopharmacol; 2023 Mar; 116():109757. PubMed ID: 36731154.
    Abstract:
    As a damage-associated molecular pattern molecule, high-mobility group box 1 (HMGB1) is well-studied and is released from injured tubular epithelial cells to trigger cell death. However, the role of intracellular HMGB1 induced cell death during acute kidney injury (AKI) is poorly understood. We showed that cytosolic HMGB1 induced ferroptosis by binding to acyl-CoA synthetase long-chain family member 4 (ACSL4), the driver of ferroptosis, following renal ischemia/reperfusion (I/R). Both mouse and human kidneys with acute tubular injury were characterized by nucleocytoplasmic translocation of HMGB1in tubular cells. Pharmacological inhibition of HMGB1 nucleocytoplasmic translocation and deletion of HMGB1 in tubular epithelial cells in mice inhibited I/R-induced AKI, tubular ferroptosis, and inflammation compared to those in controls. Co-immunoprecipitation and serial section staining confirmed the interaction between HMGB1 and ACSL4. Taken together, our results demonstrated that cytoplasmic HMGB1 is essential for exacerbating inflammation-associated cellular injury by activating renal tubular ferroptosis via ACSL4 after I/R injury. These findings indicate that cytoplasmic HMGB1 is a regulator of ferroptosis and a promising therapeutic target for AKI.
    [Abstract] [Full Text] [Related] [New Search]