These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cardamonin alleviates chondrocytes inflammation and cartilage degradation of osteoarthritis by inhibiting ferroptosis via p53 pathway.
    Author: Gong Z, Wang Y, Li L, Li X, Qiu B, Hu Y.
    Journal: Food Chem Toxicol; 2023 Apr; 174():113644. PubMed ID: 36731815.
    Abstract:
    Osteoarthritis (OA) is a common degenerative joint disease, mainly presented by the deterioration of articular cartilage. Amounts of data demonstrated this deterioration is composed of oxidative stress, pro-inflammation and chondrocyte death events. Ferroptosis is a novel form of cell death that differs from apoptosis and autophagy, recent studies have shown that chondrocyte ferroptosis contributes to the development of osteoarthritis. Cardamonin (CAD) has been demonstrated to possess antioxidant and anti-inflammatory properties in several diseases, whether CAD may influence the OA progression is still obscure. Therefore, we aimed to determine whether CAD alleviates chondrocyte ferroptosis and its effect on OA with potential mechanism. In this study, we found that inflammation, cartilage degradation and ferroptosis induced by interleukin-1β (IL-1β) were significantly alleviated by CAD. Moreover, the administration of the ferroptosis inhibitor, Deferoxamine (DFO) reversed the inflammatory and cartilage degradation effects of IL-1β as well. Chondrocyte mitochondrial morphology and function were alleviated by both CAD and DFO. We found that CAD increased collagen II, p53, SLC7A11 GPX4 expression and decreased MMP13, iNOS, COX2 expression in chondrocytes, further investigation showed that the P53 signaling pathway was involved. In vivo, intra-articular injection of CAD significantly ameliorated cartilage damage in a rat OA model, induced collagen II and SLC7A11 expression by immunohistochemistry. Our study proves that CAD ameliorated OA cartilage degradation by regulating ferroptosis via P53 signaling pathway, suggesting a potential role of CAD in OA treatment.
    [Abstract] [Full Text] [Related] [New Search]