These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immobilization of Actinobacillus succinogenes on nano- and micro-fiber membranes for efficient and robust production of succinic acid. Author: Chen PC, Zhang YD, Ye XY, Sun YW, Yin L, Zheng P. Journal: Bioprocess Biosyst Eng; 2023 Apr; 46(4):611-620. PubMed ID: 36735093. Abstract: This work aimed to study the efficiency of nano- and micro- fiber membranes in immobilizing Actinobacillus succinogenes CCTCC M2012036 for succinic acid production. Among the four kinds of electrospun nanofiber membranes of cellulose acetate, chitosan, poly(vinyl alcohol) (PVA) and chitosan-PVA, the cellulose acetate nanofiber membrane-immobilized cells performed the best with a succinic acid concentration and yield to be 27.3 ± 3.5 g/L and 70.9 ± 5.8%. The cell-immobilized viscose microfiber membrane presented good reuse stability, and 17 batches of fermentation without activity loss were realized with the highest succinic acid yield of 83.20%. A microfiber membrane bioreactor was further constructed with the cell-immobilized viscose microfiber membrane to perform fermentation on a larger scale, and the concentration, yield and productivity of succinic acid were 73.20 g/L, 86.50% and 1.49 g/(L⋅h) using a fed-batch strategy, which were 124.30%, 127.60% and 124.2% of those obtained in the traditional fermenter. This study provided an approach for improving the practicality of biological succinic acid production.[Abstract] [Full Text] [Related] [New Search]