These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection. Author: Moram SSB, Byram C, Soma VR. Journal: RSC Adv; 2023 Jan 11; 13(4):2620-2630. PubMed ID: 36741174. Abstract: We have developed simple and cost-effective surface-enhanced Raman scattering (SERS) substrates for the trace detection of pesticide (thiram and thiabendazole) and dye (methylene blue and Nile blue) molecules. Surface patterns (micro/nanostructures) on silicon (Si) substrates were fabricated using the technique of femtosecond (fs) laser ablation in ambient air. Different surface patterns were achieved by tuning the number of laser pulses per unit area (4200, 8400, 42 000, and 84 000 pulses per mm2) on Si. Subsequently, chemically synthesized gold (Au) nanostars were embedded in these laser-patterned areas of Si to achieve a plasmonic active hybrid SERS substrate. Further, the SERS performance of the as-prepared Au nanostar embedded Si substrates were tested with different probe molecules. The as-prepared substrates allowed us to detect a minimum concentration of 0.1 ppm in the case of thiram, 1 ppm in the case of thiabendazole (TBZ), 1.6 ppb in the case of methylene blue (MB), and 1.8 ppb in case of Nile blue (NB). All these were achieved using a simple, field-deployable, portable Raman spectrometer. Additionally, the optimized SERS substrate demonstrated ∼21 times higher SERS enhancement than the Au nanostar embedded plain Si substrate. Furthermore, the optimized SERS platform was utilized to detect a mixture of dyes (MB + NB) and pesticides (thiram + TBZ). The possible reasons for the observed additional enhancement are elucidated.[Abstract] [Full Text] [Related] [New Search]