These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selective NOx- Electroreduction to Ammonia on Isolated Ru Sites.
    Author: Ke Z, He D, Yan X, Hu W, Williams N, Kang H, Pan X, Huang J, Gu J, Xiao X.
    Journal: ACS Nano; 2023 Feb 28; 17(4):3483-3491. PubMed ID: 36745389.
    Abstract:
    Nitrate and nitrite (NOx-) are widespread contaminants in industrial wastewater and groundwater. Sustainable ammonia (NH3) production via NOx- electroreduction provides a prospective alternative to the energy-intensive industrialized Haber-Bosch process. However, selectively regulating the reaction pathway, which involves complicated electron/proton transfer, toward NH3 generation relies on the robust catalyst. A specific consideration in designing selective NOx--to-NH3 catalysts should meet the criteria to suppress competing hydrogen evolution and avoid the presence of neighboring active sites that are in favor of adverse N-N coupling. Nevertheless, efforts in this regard are still inadequate. Herein, we demonstrate that isolated ruthenium sites can selectively reduce NOx- into NH3, with maximal Faradaic efficiencies of 97.8% (NO2- reduction) and 72.8% (NO3- reduction) at -0.6 and -0.4 V, respectively. Density functional theory calculations simulated the reaction mechanisms and identified the *NO → *NOH as the potential rate-limiting step for NOx--to-NH3 conversion on single-atom Ru sites.
    [Abstract] [Full Text] [Related] [New Search]