These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced dissolution rate of nimodipine through β-lactoglobulin based formulation.
    Author: Leng D, Bulduk B, Anlahr J, Müllers W, Löbmann K.
    Journal: Int J Pharm; 2023 Mar 25; 635():122693. PubMed ID: 36754186.
    Abstract:
    Amorphous solid dispersions (ASD) have been considered as one of the most effective strategies to increase solubility and dissolution rate of poorly water-soluble drugs. Carriers, in which the poorly water-soluble drug is dispersed, contribute a large extent to the solid-state properties, stabilities and dissolution performance of ASDs. This study investigated the solid-state properties, physical stability, and in vitro dissolution behaviour of nimodipine ASDs formulated with a traditional polymeric carrier, i.e., polyvinylpyrrolidone (PVP) and a novel carrier, i.e., β-lactoglobulin (BLG). The ASDs with both carriers were prepared using ball milling as preparative technique at 10 %, 17.5 %, 25 %, 30 % and 40 % drug loadings (DLs). All the formulations were found to be amorphous upon milling for 60 min based on X-ray powder diffraction measurements, however, the ASDs were found to be homogeneous unequivocally only at DLs below 25 %. After open storage at accelerated conditions (40 °C/75 % relative humidity), only the ASDs formulated with BLG at 10 % and 17.5 % DLs maintained the amorphous form. The dissolution study revealed that all the freshly prepared ASDs formulated with PVP and the ASDs formulated with BLG at or above 25 % DLs, showed a low drug release (<30 µg/mL in simulated gastric fluid, < 70 µg/mL in simulated intestinal fluid). Whilst the ASD formulated with BLG at 10 % DL exhibited a high drug release with a maximum concentration (Cmax) of 251 µg/mL in simulated gastric fluid and 231 µg/mL in simulated intestinal fluid. Surprisingly, the ASD formulated with BLG at 17.5 % DL demonstrated an even higher drug release (Cmax, 643 µg/mL in simulated gastric fluid, 332 µg/mL in simulated intestinal fluid), compared to the ASD of 10 % DL. These findings underline the importance of rationally investigating both carrier types and DL in the design of ASDs, in order to obtain a stable ASD with the desired enhanced dissolution rate of poorly water-soluble drugs.
    [Abstract] [Full Text] [Related] [New Search]