These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural basis of botulinum neurotoxin serotype A1 binding to human SV2A or SV2C receptors.
    Author: Azzaz F, Hilaire D, Fantini J.
    Journal: Chem Biol Interact; 2023 Mar 01; 373():110384. PubMed ID: 36754227.
    Abstract:
    Botulinum neurotoxin A1 (BoNT/A1) is the most potent natural poison in human. BoNT/A1 recognize the luminal domain of SV2A (LD-SV2A) and its glycosylation at position N573 (N573g) or the luminal domain of SV2C (LD-SV2C) and its glycosylation at position N559 (N559g) to bind neural membrane. Our computational data suggest that the N-glycan at position 480 (N480g) in the luminal domain of SV2C (LD-SV2C) indirectly enhanced the contacts of the neurotoxin surface with the second N-glycan at position 559 (N559g) by acting as a shield to prevent N559g to interact with residues of LD-SV2C. The absence of an N-glycan homologous to N480g in LD-SV2A leads to a decrease of the binding of N573g to the surface of BoNT/A1. Concerning the intermolecular interactions between BoNT/A and the protein part of LD-SV2A or LD-SV2C, we showed that the high affinity of the neurotoxin for binding LD-SV2C are mediated by a better compaction of its F557-F562 part provided by a π-π network mediated by residues F547, F552, F557 and F562 coupled with the presence of two aromatic residues at position 563 and 564 that optimize the binding of BoNT/A1 via cation-pi and CH-pi interaction. Finally, in addition to the well-known ganglioside binding site which accommodates a ganglioside on the surface of BoNT/A1, we identified a structure we coined the ganglioside binding loop defined by the sequence 1253-HQFNNIAK-1260 that is conserved across all subtypes of BoNT/A and is predicted to has a high affinity to interact with gangliosides. These data solved the puzzle generated by mutational studies that could be only partially understood with crystallographic data that lack both a biologically relevant membrane environment and a full glycosylation of SV2.
    [Abstract] [Full Text] [Related] [New Search]