These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic reprogramming and biosensor-assisted mutagenesis screening for high-level production of L-arginine in Escherichia coli.
    Author: Jiang S, Wang R, Wang D, Zhao C, Ma Q, Wu H, Xie X.
    Journal: Metab Eng; 2023 Mar; 76():146-157. PubMed ID: 36758663.
    Abstract:
    L-arginine is a value-added amino acid with promising applications in the pharmaceutical and nutraceutical industries. Further unleashing the potential of microbial cell factories to make L-arginine production more competitive remains challenging due to the sophisticated intracellular interaction networks and the insufficient knowledge of global metabolic regulation. Here, we combined multilevel rational metabolic engineering with biosensor-assisted mutagenesis screening to exploit the L-arginine production potential of Escherichia coli. First, multiple metabolic pathways were systematically reprogrammed to redirect the metabolic flux into L-arginine synthesis, including the L-arginine biosynthesis, TCA cycle, and L-arginine export. Specifically, a toggle switch responding to special cellular physiological conditions was designed to dynamically control the expression of sucA and pull more carbon flux from the TCA cycle toward L-arginine biosynthesis. Subsequently, a biosensor-assisted high-throughput screening platform was designed and applied to further exploit the L-arginine production potential. The best-engineered ARG28 strain produced 132 g/L L-arginine in a 5-L bioreactor with a yield of 0.51 g/g glucose and productivity of 2.75 g/(L ⋅ h), which were the highest values reported so far. Through whole genome sequencing and reverse engineering, Frc frameshift mutant, PqiB A78P mutant, and RpoB P564T mutant were revealed for enhancing the L-arginine biosynthesis. Our study exhibited the power of coupling rational metabolic reprogramming and biosensor-assisted mutagenesis screening to unleash the cellular potential for value-added metabolite production.
    [Abstract] [Full Text] [Related] [New Search]