These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrolysis of human high-molecular-mass kininogen by human plasma kallikrein. Proposal of a new model concept for the course of reaction in presence and absence of C1(-)-inhibitor. Author: Wiedler J, Dutler H. Journal: Biol Chem Hoppe Seyler; 1987 Sep; 368(9):1203-13. PubMed ID: 3675872. Abstract: Hydrolysis of high-molecular-mass kininogen was studied by following the changes in the amounts of substrate, intermediates and products as a function of time using quantitative polyacrylamide-gel electrophoresis (silver staining). The experimental data was analysed on the basis of the concept that the overall reaction is composed of three hydrolysis reactions, two positional-change processes of intermediates at the active site, and two product-substrate exchange processes. It is proposed C1(-)-inhibitor to form two types of complexes with kallikrein, one with non-covalent and one with covalent bonds. With an adequately chosen set of reaction-partner concentrations and four different kinds of experimental conditions with respect to kininogen and inhibitor addition to kallikrein, the following results were obtained: 1) Non-covalently bound inhibitor has no effect on the first and the second hydrolysis reaction, but efficiently interferes with the third hydrolysis reaction; 2) Nicked kininogen (first intermediate; one of the two bradykinin bonds split) for the second bond to be hydrolysed undergoes a positional change during which it remains strongly bound to the enzyme, never exchanges with kininogen, and is not displaced by non-covalently bound inhibitor; 3) Intermediate kinin-free kininogen (second intermediate; both bradykinin bonds split and bradykinin released) prior to turning over into stable kinin-free kininogen (final product; histidine-rich fragment split off and released) undergoes a positional change involving dissociation and reassociation so that non-covalently bound inhibitor finds access to the active site; 4) Intermediate kinin-free kininogen to sustain multiple turnovers exchanges with kininogen via a stable complex of such structure that during this process non-covalently bound inhibitor cannot or can only slightly interfere; 5) Stable kinin-free kininogen to sustain multiple turnovers exchanges with intermediate kinin-free kininogen via free enzyme with the effect that non-covalently bound inhibitor efficiently interferes; 6) As hydrolysis proceeds more and more inhibitor becomes covalently bound, gradually leading to complete inactivation of the enzyme.[Abstract] [Full Text] [Related] [New Search]