These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purine and pyrimidine transport and permeation in human erythrocytes. Author: Plagemann PG, Woffendin C, Puziss MB, Wohlhueter RM. Journal: Biochim Biophys Acta; 1987 Nov 27; 905(1):17-29. PubMed ID: 3676308. Abstract: Time courses of the uptake of radiolabeled hypoxanthine, adenine and uracil were measured by rapid kinetic techniques over substrate ranges from 0.02 to 5000 microM in suspensions of human erythrocytes at 25 or 30 degrees C. At concentrations above 25 microM, the rate of intracellular phosphoribosylation of hypoxanthine and adenine was insignificant relative to their rates of entry into the cell and time courses of transmembrane equilibration of the substrates could be measured and analyzed by integrated rate analysis. Hypoxanthine and uracil are transported by simple facilitated carriers with directional symmetry, high capacity and Michaelis-Menten constants of about 0.2 and 5 mM, respectively. Adenine is probably transported by a carrier with similar properties but no saturability was detectable up to a concentration of 5 mM. Cytosine entered the cells much more slowly than the other three nucleobases, and its entry seems not to be mediated by a carrier. The hypoxanthine transporter resembles that of one group of mammalian cell lines, which does not exhibit any overlap with the nucleoside transporter and is resistant to inhibitors of nucleoside transport. Results from studies on the effects of the nucleobases on the influx and countertransport of each other were complex and did not allow unequivocal conclusions as to the number of independent carriers involved. At concentrations below 5 microM, radiolabel from adenine and hypoxanthine accumulated intracellularly to higher than equilibrium levels. Part of this accumulation reflected metabolic trapping, especially when the medium contained 50 mM phosphate. But part was due to an apparent concentrative accumulation of free adenine and hypoxanthine up to 3-fold at medium concentrations much less than 1 microM and when cells were incubated in phosphate-free medium. This concentrative accumulation could be due to the functioning of additional high-affinity, low-capacity, active transport systems for adenine and hypoxanthine, but other factors could be responsible, such as saturable binding to intracellular components.[Abstract] [Full Text] [Related] [New Search]