These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rod photoreceptor activation and deactivation in early-stage diabetic eye disease. Author: McAnany JJ, Park JC. Journal: Doc Ophthalmol; 2023 Jun; 146(3):229-239. PubMed ID: 36763216. Abstract: PURPOSE: To infer rod phototransduction activation and deactivation characteristics in diabetics who have mild or no clinically-apparent retinopathy. METHODS: Fifteen non-diabetic controls, 15 diabetics with no clinically-apparent diabetic retinopathy (NDR), and 15 diabetics with mild non-proliferative diabetic retinopathy (MDR) participated. Dark-adapted flash electroretinograms (3.2 to 4.4 log scot td-s) were recorded to assess rod activation. The a-waves were fit with a Gaussian model to derive Rmp3 (maximum photoreceptor response amplitude) and S (phototransduction sensitivity). Rod deactivation was assessed with a paired flash paradigm, in which a-waves were measured for two flashes separated by inter-stimulus intervals (ISIs) of 0.125 to 16 s. The ISI needed for the a-wave amplitude of the second flash to recover to 50% of the first flash (t50) was determined. The effect of stimulus retinal illuminance on activation and deactivation was evaluated in a subset of control subjects. RESULTS: Analysis of variance indicated that both diabetic groups had significant log S reductions compared to controls (p < 0.001). Mean S was reduced by approximately 49% and 78% for the NDR and MDR groups, respectively. In contrast, log Rmp3 and log t50 did not differ significantly among the groups (both p > 0.08). Reducing stimulus retinal illuminance significantly reduced S, but did not significantly affect Rmax or t50. CONCLUSIONS: Only phototransduction sensitivity was abnormal in this sample of diabetic subjects. The normal deactivation kinetics suggests that circulating rod current is normal. These findings begin to constrain possible explanations for abnormal rod function in early diabetic retinal disease.[Abstract] [Full Text] [Related] [New Search]