These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-performance homogeneous carboxymethylcellulose-stabilized Au@Ag NRs-CMC surface-enhanced Raman scattering chip for thiram detection in fruits. Author: Hu B, Sun DW, Pu H, Huang Z. Journal: Food Chem; 2023 Jun 30; 412():135332. PubMed ID: 36774690. Abstract: Cellulose material holds considerable promise for effective surface-enhanced Raman scattering (SERS) substrate construction due to its extensive availability, chemically modifying capacity, ease of manufacture, high flexibility and low optical activity. A large-area, high-sensitivity, stable and uniform Au@Ag nanorods (NRs)-CMC substrate was successfully developed via electrostatic repulsion by using negatively-charged core-shell Au@Ag NRs as SERS active plasmonic nanomaterial, combined with negatively-charged carboxymethylcellulose (CMC) hydrogel for nanoparticles stabilization, homodisperse and protection. The obtained Au@Ag NRs-CMC substrate showed excellent sensitivity for the detection of thiram residues in fruits containing low and abundant pigment interferents, such as apples and blueberries, with detection limits of 58 and 78 ppb, respectively. Additionally, it retained more than 80% SERS performance after storage for 9 months under ambient conditions, demonstrating its great potential in facilitating the commercialization of cellulose-based SERS technology for cost-effective detection of food contaminants with advantages of facile preparation procedure, uniformity, reproducibility and long-term stability.[Abstract] [Full Text] [Related] [New Search]