These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Analysis on Contamination Characteristics, Pollution Source Identification and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons of Groundwater in a Large Coking Plant Site of Province]. Author: Zhang QQ, Xing JB, Wang HW, Liu JT, Chen X. Journal: Huan Jing Ke Xue; 2023 Feb 08; 44(2):807-815. PubMed ID: 36775604. Abstract: Polycyclic aromatic hydrocarbons (PAHs), as a highly toxic persistent organic pollutant, are commonly found in soil and water environments. In recent years, the pollution of PAHs in groundwater has attracted wide attention from scientists. To study the pollution characteristics and sources of polycyclic aromatic hydrocarbon in groundwater of the coking site, 16 PAHs priorly controlled by the US EPA were analyzed and discussed. In this study, we identified the contamination characteristics of PAHs in groundwater, analyzed the pollution sources of PAHs, and evaluated the ecological risk of PAHs in the coking site by combining statistical techniques, the positive matrix factorization (PMF) model, and risk quotient (RQ) methods. The results indicated that the total detection rate of PAHs in groundwater of the coking plant was 46.7%. The concentrations of PAHs in groundwater of the coking plant ranged from below the detection limit to 444.9 μg·L-1, with the average value of 1.88 μg·L-1. The concentration of PAHs in the groundwater of different production workshops was significantly different. The most polluted workshop was in the tar-refining area, and the concentration of 16 PAHs was 444.9 μg·L-1. Based on the PMF model, we identified the two primary contamination sources of PAHs in groundwater of the coking plant:① oil combustion and ② coal and biomass combustion and oil leakage. The contribution ratios of the two sources to PAHs of groundwater were 38.6% and 61.4%, respectively. The results of the ecological risk assessment indicated that Σ16PAHs in groundwater of the coking plant had high ecological risk, and the ecological risk of single PAHs in 53.4% of the groundwater sampling site was at a high ecological risk level. In conclusion, it is urgent to carry out the treatment and restoration of the groundwater environment in the coking plant site.[Abstract] [Full Text] [Related] [New Search]