These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cold exposure induces browning of bovine subcutaneous white fat in vivo and in vitro. Author: Li T, Bai H, Yang L, Wang H, Wei S, Yan P. Journal: J Therm Biol; 2023 Feb; 112():103446. PubMed ID: 36796901. Abstract: White adipocytes can be transformed into beige adipocytes through the process of browning under cold exposure. To investigate the effects and underlying mechanisms of cold exposure on subcutaneous white fat in cattle, in vitro and in vivo studies were performed. Eight bulls of Jinjiang cattle breed (Bos taurus) aged 18 months were allocated to the control group (n = 4, autumn) or the cold group (n = 4, winter) by different slaughter seasons. Biochemical and histomorphological parameters were detected in blood and backfat samples. Subcutaneous adipocytes from Simental cattle (Bos taurus) were then isolated and cultured at a normal body temperature (37 °C) and at a cold temperature (31 °C) in vitro. In the in vivo study, cold exposure stimulated subcutaneous white adipose tissue (sWAT) browning by reducing adipocyte sizes and up-regulating the expression levels of browning-specific makers (UCP1, PRDM16, and PGC-1α) in cattle. In addition, cold-exposed cattle displayed lower lipogenesis transcriptional regulator levels (PPARγ and CEBPα) and higher lipolysis regulator levels (HSL) in sWAT. In the in vitro study, cold temperature inhibited subcutaneous white adipocytes (sWA) adipogenic differentiation by reducing lipid contents and decreasing the expression of adipogenic marker genes and proteins. Furthermore, cold temperature led to sWA browning which was characterized by increased browning-related genes, mitochondrial contents, and mitochondrial biogenesis-specific markers. In addition, p38 MAPK signaling pathway activity was stimulated by the incubation in cold temperature for 6 h in sWA. We concluded that the cold-induced browning of the subcutaneous white fat was beneficial to the production of heat and the maintenance of body temperature regulation in cattle.[Abstract] [Full Text] [Related] [New Search]