These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of high-speed shear and double-enzymatic hydrolysis on the structural and physicochemical properties of rice porous starch.
    Author: Xiao W, He H, Dong Q, Huang Q, An F, Song H.
    Journal: Int J Biol Macromol; 2023 Apr 15; 234():123692. PubMed ID: 36801279.
    Abstract:
    This study aimed to investigate the physicochemical properties of the rice porous starch (HSS-ES) prepared by high-speed shear combined with double-enzymatic (α-amylase and glucoamylase) hydrolysis, and to reveal their mechanism. The analyses of 1H NMR and amylose content showed that high-speed shear changed the molecular structure of starch and increased the amylose content (up to 20.42 ± 0.04 %). FTIR, XRD and SAXS spectra indicated that high-speed shear did not change the starch crystal configuration but caused a decrease in short-range molecular order and relative crystallinity (24.42 ± 0.06 %), and a loose semi-crystalline lamellar, which were beneficial to the followed double-enzymatic hydrolysis. Therefore, the HSS-ES displayed a superior porous structure and larger specific surface area (2.962 ± 0.002 m2/g) compared with double-enzymatic hydrolyzed porous starch (ES), resulting in the increase of water and oil absorption from 130.79 ± 0.50 % and 109.63 ± 0.71 % to 154.79 ± 1.14 % and 138.40 ± 1.18 %, respectively. In vitro digestion analysis showed that the HSS-ES had good digestive resistance derived from the higher content of slowly digestible and resistant starch. The present study suggested that high-speed shear as an enzymatic hydrolysis pretreatment significantly enhanced the pore formation of rice starch.
    [Abstract] [Full Text] [Related] [New Search]