These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ehlers-Danlos syndrome type VIIB. Deletion of 18 amino acids comprising the N-telopeptide region of a pro-alpha 2(I) chain.
    Author: Wirtz MK, Glanville RW, Steinmann B, Rao VH, Hollister DW.
    Journal: J Biol Chem; 1987 Dec 05; 262(34):16376-85. PubMed ID: 3680255.
    Abstract:
    A patient with Ehlers-Danlos syndrome Type VIIB was found to have an interstitial deletion of 18 amino acids in approximately half of the pro-alpha 2(I) chains of Type I procollagen. Analysis of pepsin-solubilized tissue and fibroblast collagen revealed an abnormal additional chain, alpha 2(I)', which migrated in sodium dodecyl sulfate-5% polyacrylamide gel electrophoresis between the normal alpha 1(I) and alpha 2(I) chains. The apparent ratio of normal alpha 1(I):mutant alpha 2(I)':normal alpha 2(I) was 4:1:1. Procollagen studies and enzyme digestion studies of native mutant collagen suggested defective removal of the amino propeptide. Sieve chromatography of CNBr peptides from purified alpha 2(I)' chains revealed the absence of the normal amino telopeptide fragment CB 1 and the appearance of a larger new peptide of approximately 60 residues (CB X). Compositional and sequencing studies of this peptide identified normal amino propeptide sequences. However, the most carboxyl-terminal tryptic peptide of CB X differed substantially in composition and sequence from the expected and was found to have an interstitial deletion of 18 amino acids corresponding to the N-telopeptide of the pro-alpha 2(I) chain. This deletion removes the normal sites of cleavage of the N-proteinase and also removes a critical cross-linking lysine residue. The 18 amino acids deleted correspond exactly to the residues encoded by exon 6 of the pro-alpha 2(I) collagen gene (COL 1 A2), and, therefore, the protein defect may be due to a genomic deletion, or alternatively, an RNA splicing defect.
    [Abstract] [Full Text] [Related] [New Search]