These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Abnormal functional connectivity of the posterior hypothalamus and other arousal regions in surgical temporal lobe epilepsy. Author: Jiang JW, Narasimhan S, Johnson GW, González HFJ, Doss DJ, Shless JS, Paulo DL, Terry DP, Chang C, Morgan VL, Englot DJ. Journal: J Neurosurg; 2023 Sep 01; 139(3):640-650. PubMed ID: 36807210. Abstract: OBJECTIVE: This study sought to characterize resting-state functional MRI (fMRI) connectivity patterns of the posterior hypothalamus (pHTH) and the nucleus basalis of Meynert (NBM) in surgical patients with mesial temporal lobe epilepsy (mTLE), and to investigate potential correlations between functional connectivity of these arousal regions and neurocognitive performance. METHODS: The study evaluated resting-state fMRI in 60 patients with preoperative mTLE and in 95 healthy controls. The authors first conducted voxel-wise connectivity analyses seeded from the pHTH, combined anterior and tuberal hypothalamus (atHTH; i.e., the rest of the hypothalamus), and the NBM ipsilateral (ipsiNBM) and contralateral (contraNBM) to the epileptogenic zone. Based on these results, the authors included the pHTH, ipsiNBM, and frontoparietal neocortex in a network-based statistic (NBS) analysis to elucidate a network that best distinguishes patients from controls. The connections involving the pHTH and ipsiNBM from this network were included in age-corrected pairwise region of interest (ROI) analysis, along with connections between arousal structures, including the pHTH, ipsiNBM, and brainstem arousal regions. Finally, patient functional connectivity was correlated with clinical neurocognitive testing scores for IQ as well as attention and concentration tests. RESULTS: The voxel-wise analysis demonstrated that the pHTH, when compared with the atHTH, showed more widespread functional connectivity decreases in surgical mTLE patients when compared with controls. It was also observed that the ipsiNBM, but not the contraNBM, showed decreased functional connectivity in mTLE. The NBS analysis uncovered a perturbed network of frontoparietal regions, the pHTH, and ipsiNBM that distinguishes patients from controls. Age-corrected ROI analysis revealed functional connectivity decreases between the pHTH and bilateral superior frontal gyri, medial orbitofrontal cortices, rostral anterior cingulate cortices, and inferior parietal cortices in mTLE when compared with controls. For the ipsiNBM, there was reduced connectivity with bilateral medial orbitofrontal and rostral anterior cingulate cortices. Age-corrected ROI analysis also demonstrated upstream connectivity decreases from controls between the pHTH and the brainstem arousal regions, cuneiform/subcuneiform (CSC) nuclei, and ventral tegmental area, as well as the ipsiNBM and CSC nuclei. Reduced functional connectivity was also detected between the pHTH and ipsiNBM. Lastly, neurocognitive test scores for attention and concentration were found to be positively correlated with the functional connectivity between the pHTH and ipsiNBM, suggesting worse performance associated with connectivity perturbations. CONCLUSIONS: This study demonstrated perturbed resting-state functional connectivity of arousal regions in surgical mTLE and is one of the first investigations to demonstrate decreased functional connectivity of the pHTH with frontoparietal regions and other arousal regions. Connectivity disturbances in arousal regions may contribute to neurocognitive deficits in surgical mTLE patients.[Abstract] [Full Text] [Related] [New Search]