These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Holey Ti3C2 MXene-Derived Anode Enables Boosted Kinetics in Lithium-Ion Capacitors.
    Author: Zhou HY, Lin LW, Sui ZY, Wang HY, Han BH.
    Journal: ACS Appl Mater Interfaces; 2023 Mar 08; 15(9):12161-12170. PubMed ID: 36812348.
    Abstract:
    Lithium-ion capacitors (LICs) attract enormous attention because of the urgent demands for high power and energy density devices. However, the intrinsic imbalance between anodes and cathodes with different charge-storage mechanisms blocks the further improvement in energy and power density. MXenes, novel two-dimensional materials with metallic conductivity, accordion-like structure, and regulable interlayer spacing, are widely employed in electrochemical energy storage devices. Herein, we propose a holey Ti3C2 MXene-derived composite (pTi3C2/C) with enhanced kinetics for LICs. This strategy effectively decreases the surface groups (-F and -O) and generates expanded interplanar spacing. The in-plane pores of Ti3C2Tx lead to increased active sites and accelerated lithium-ion diffusion kinetics. Benefiting from the expanded interplanar spacing and accelerated lithium-ion diffusion, the pTi3C2/C as an anode implements excellent electrochemical property (capacity retention about 80% after 2000 cycles). Furthermore, the LIC fabricated with a pTi3C2/C anode and an activated carbon cathode displays a maximum energy density of 110 Wh kg-1 and a considerable energy density of 71 Wh kg-1 at 4673 W kg-1. This work provides an effective strategy to achieve high antioxidant capability and boosted electrochemical properties, which represents a new exploration of structural design and tuneable surface chemistry for MXene in LICs.
    [Abstract] [Full Text] [Related] [New Search]