These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Room-temperature spin-valve devices based on Fe3GaTe2/MoS2/Fe3GaTe2 2D van der Waals heterojunctions.
    Author: Jin W, Zhang G, Wu H, Yang L, Zhang W, Chang H.
    Journal: Nanoscale; 2023 Mar 16; 15(11):5371-5378. PubMed ID: 36820813.
    Abstract:
    The spin-valve effect has been the focus of spintronics over the last decades due to its potential for application in many spintronic devices. Two-dimensional (2D) van der Waals (vdW) materials are highly efficient to build spin-valve heterojunctions. However, the Curie temperatures (TC) of the vdW ferromagnetic (FM) 2D crystals are mostly below room temperature (∼30-220 K). It is very challenging to develop room-temperature, FM 2D crystal-based spin-valve devices. Here, we report room-temperature, FM 2D-crystal-based all-2D vdW Fe3GaTe2/MoS2/Fe3GaTe2 spin-valve devices. The magnetoresistance (MR) of the device was up to 15.89% at 2.3 K and 11.97% at 10 K, which are 4-30 times the MR of the spin valves of Fe3GeTe2/MoS2/Fe3GeTe2 and conventional NiFe/MoS2/NiFe. The typical spin valve effect showed strong dependence on the MoS2 spacer thickness in the vdW heterojunction. Importantly, the spin valve effect (0.31%) robustly existed even at 300 K with low working currents down to 10 nA (0.13 A cm-2). This work provides a general vdW platform to develop room-temperature, 2D FM-crystal-based 2D spin-valve devices.
    [Abstract] [Full Text] [Related] [New Search]