These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Estrogen-2/4-hydroxylase activities in rat brain and liver microsomes exhibit different substrate preferences and sensitivities to inhibition.
    Author: Theron CN, Russell VA, Taljaard JJ.
    Journal: J Steroid Biochem; 1987 Nov; 28(5):533-41. PubMed ID: 3682818.
    Abstract:
    NADPH-dependent estrogen-2/4-hydroxylase activities in rat brain and liver microsomes were compared with respect to the utilization of different estrogens as substrates and the inhibitory effects of alpha-naphthoflavone, metyrapone and steroids. Of 6 different estrogens used as substrates, only 17 beta- and 17 alpha-estradiol were transformed relatively effectively by brain microsomes. In contrast liver microsomes utilized these two estrogens as well as ethynyl estradiol, estrone and diethylstilbestrol effectively. Estriol was a poor substrate for estrogen-2/4-hydroxylase activity in both tissues. With 40 microM 17 beta-estradiol as substrate the estrogen-2/4-hydroxylase activities in brain and liver were inhibited by alpha-naphthoflavone, metyrapone, progesterone, 17 alpha-hydroxyprogesterone and testosterone. The brain enzyme activity appeared to be more sensitive than the liver enzyme to inhibition by alpha-naphthoflavone and metyrapone. Testosterone propionate (50-100 microM) stimulated the brain enzyme activity significantly. Progesterone and 17 alpha-hydroxyprogesterone were the most effective steroidal inhibitors of brain estrogen-2/4-hydroxylase activity. In the liver the inhibitory potencies of 3 different steroids varied, depending on the estrogen used as substrate. With 17 beta-estradiol, for example, progesterone was the most potent steroidal inhibitor, while corticosterone was the most potent inhibitor when diethylstilbestrol was used as substrate. These findings indicate that rat liver microsomes can utilize a wider range of different estrogens for catecholestrogen formation than brain microsomes and suggest that the profiles of catecholestrogen-forming P-450 isozymes in the two organs differ.
    [Abstract] [Full Text] [Related] [New Search]