These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Graphene Oxide-PAMAM Nanocomposite and Ionic Liquid Modified Carbon Paste Electrode: An Efficient Electrochemical Sensor for Simultaneous Determination of Catechol and Resorcinol.
    Author: Garkani Nejad F, Beitollahi H, Sheikhshoaie I.
    Journal: Diagnostics (Basel); 2023 Feb 08; 13(4):. PubMed ID: 36832120.
    Abstract:
    In this paper, a simple strategy was proposed for the analysis of catechol by a carbon paste electrode (CPE) modified with graphene oxide-third generation of poly(amidoamine) dendrimer (GO/G3-PAMAM) nanocomposite and ionic liquid (IL). The synthesis of GO-PAMAM nanocomposite was confirmed using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FT-IR) techniques. The prepared modified electrode (GO-PAMAM/ILCPE) exhibited good performance to detect catechol with a notable decrease in overpotential and increase in current compared with an unmodified CPE. Under optimum experimental conditions, GO-PAMAM/ILCPE electrochemical sensors indicated a lower limit of detection (LOD) of 0.034 μM and a linear response in the concentration range of 0.1 to 200.0 µM for the quantitative measurement of catechol in aqueous solutions. In addition, GO-PAMAM/ILCPE sensor exhibited an ability to simultaneously determine catechol and resorcinol. It can be found that catechol and resorcinol could be completely separated on the GO-PAMAM/ILCPE with the differential pulse voltammetry (DPV) technique. Finally, a GO-PAMAM/ILCPE sensor was utilized to detect catechol and resorcinol in water samples with recoveries of 96.2% to 103.3% and relative standard deviations (RSDs) of less than 1.7%.
    [Abstract] [Full Text] [Related] [New Search]