These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulating Hollow Carbon Cage Supported NiCo Alloy Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution Reaction. Author: Qi B, Chang W, Xu Q, Jiang L, An S, Chu JF, Song YF. Journal: ACS Appl Mater Interfaces; 2023 Mar 08; 15(9):12078-12087. PubMed ID: 36843294. Abstract: The NiCo alloy is one of the most promising alternatives to the noble-metal electrocatalysts for the hydrogen evolution reaction (HER); however, its performance is largely restricted by insufficient active sites and low surface area. Here, we fabricated a hierarchical hollow carbon cage supported NiCo alloy (denoted as HC NiCo/C) and a bulk NiCo alloy (denoted as NiCo) by reduction of a partially ZIF-67 etched ZIF-67@NiCo-LDH (LDH = layered double hydroxide) precursor and a fully ZIF-67 etched NiCo-LDH precursor, respectively. The as-prepared HC NiCo/C, in which the Ni29Co71 alloy nanocrystals with an average 6 nm size were encapsulated in graphitic carbon layers, provided a vastly increased electrochemically active surface area (ca. 13 times than the NiCo) and abundant catalytic active sites, which resulted in a higher HER performance with an overpotential of 99 mV than the 198 mV for NiCo at 10 mA cm-2. Detailed experimental results suggested that only the HC NiCo/C possessed the active alloy surface composed of unsaturated Ni0 and Co0 atoms, and both the metal-support interaction and alloying effect influenced the electronic structure of Co and Ni in HC NiCo/C, whereas the NiCo exhibited pure Ni surface. Theoretical calculations further revealed the Ni29Co71 alloy surface in HC NiCo/C possessed the appropriate adsorption energy of the intermediate state (adsorbed H*). This work provided new insight into the construction of the stable small-sized bimetallic alloy nanocatalysts by regulating the reduction precursors.[Abstract] [Full Text] [Related] [New Search]