These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient catalysts of surface hydrophobic Cu-BTC with coordinatively unsaturated Cu(I) sites for the direct oxidation of methane.
    Author: Li W, Li Z, Zhang H, Liu P, Xie Z, Song W, Liu B, Zhao Z.
    Journal: Proc Natl Acad Sci U S A; 2023 Mar 07; 120(10):e2206619120. PubMed ID: 36848552.
    Abstract:
    Selective oxidation of methane to organic oxygenates over metal-organic frameworks (MOFs) catalysts at low temperature is a challenging topic in the field of C1 chemistry because of the inferior stability of MOFs. Modifying the surface of Cu-BTC via hydrophobic polydimethylsiloxane (PDMS) at 235 °C under vacuum not only can dramatically improve its catalytic cycle stability in a liquid phase but also generate coordinatively unsaturated Cu(I) sites, which significantly enhances the catalytic activity of Cu-BTC catalyst. The results of spectroscopy characterizations and theoretical calculation proved that the coordinatively unsaturated Cu(I) sites made H2O2 dissociative into •OH, which formed Cu(II)-O active species by combining with coordinatively unsaturated Cu(I) sites for activating the C-H bond of methane. The high productivity of C1 oxygenates (CH3OH and CH3OOH) of 10.67 mmol gcat.-1h-1 with super high selectivity of 99.6% to C1 oxygenates was achieved over Cu-BTC-P-235 catalyst, and the catalyst possessed excellent reusability.
    [Abstract] [Full Text] [Related] [New Search]