These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An all-graphdiyne electrochemiluminescence biosensor for the ultrasensitive detection of microRNA-21 based on target recycling with DNA cascade reaction for signal amplification.
    Author: Lin Y, Wu J, Wu Y, Ma R, Zhou Y, Shi J, Li M, Tan X, Huang K.
    Journal: Analyst; 2023 Mar 13; 148(6):1330-1336. PubMed ID: 36857694.
    Abstract:
    Graphdiyne oxide quantum dots (GDYO QDs), as derivatives of graphdiyne (GDY), have excellent electroconductibility and luminous properties and can be applied as a new ECL emitter. Herein, an electrochemiluminescence (ECL) biosensor for miRNA-21 ultrasensitive determination is constructed based on AuNPs/GDY, GDYO QD and oligonucleotide signal amplification strategy that integrates DNA walker and hybridization chain reaction (HCR) amplification. As electrode substrate material, AuNPs/GDY can not only bond with the aptamer CP but can also enhance the conductivity of the interface. When miRNA-21 exists, the DNA walker process is initiated, and the signaling probes are introduced on the electrode surface, producing abundant double-stranded H1/H2; then, H3/H4 undergoes complementary base pairing with H1/H2 through HCR. With the increase in miRNA-21, the 3D DNA nanomachine is actively manipulated, resulting in a gradual increase in ECL signal. This ECL biosensor demonstrates outstanding performance in the determination of miRNA-21 in the linear range from 0.1 fM to 1 nM. This study offers a new sensitive idea for the clinical analysis of cancer biomarkers.
    [Abstract] [Full Text] [Related] [New Search]