These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural analysis of pathogenic TMPRSS3 variants and their cochlear implantation outcomes of sensorineural hearing loss.
    Author: Lee SJ, Lee S, Han JH, Choi BY, Lee JH, Lee DH, Lee SY, Oh SH.
    Journal: Gene; 2023 May 20; 865():147335. PubMed ID: 36871673.
    Abstract:
    TMPRSS3, a type II transmembrane serine protease, is involved in various biological processes including the development and maintenance of the inner ear. Biallelic variants in TMPRSS3 typically result in altered protease activity, causing autosomal recessive non-syndromic hearing loss (ARNSHL). Structural modeling has been conducted to predict the pathogenicity of TMPRSS3 variants and to gain a better understanding of their prognostic correlation. The mutant-driven changes in TMPRSS3 had substantial impacts on neighboring residues, and the pathogenicity of variants was predicted based on their distance from the active site. However, a more in-depth analysis of other factors, such as intramolecular interactions and protein stability, which affect proteolytic activities is yet to be conducted for TMPRSS3 variants. Among 620 probands who provided genomic DNA for molecular genetic testing, eight families with biallelic TMPRSS3 variants that were segregated in a trans configuration were included. Seven different mutant alleles, either homozygous or compound heterozygous, contributed to TMPRSS3-associated ARNSHL, expanding the genotypic spectrum of disease-causing TMPRSS3 variants. Through three-dimensional modeling and structural analysis, TMPRSS3 variants compromise protein stability by altering intramolecular interactions, and each mutant differently interacts with the serine protease active site. Furthermore, the changes in intramolecular interactions leading to regional instability correlate with the results of functional assay and residual hearing function, but overall stability predictions do not. Our findings also build on previous evidence indicating that most recipients with TMPRSS3 variants have favorable cochlear implantation (CI) outcomes. We found that age at CI was significantly correlated with speech performance outcomes; genotype was not correlated with these outcomes. Collectively, the results of this study contribute to a more structural understanding of the underlying mechanisms of ARNSHL caused by TMPRSS3 variants.
    [Abstract] [Full Text] [Related] [New Search]