These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Author: Zhang Z, Karimi-Maleh H. Journal: Chemosphere; 2023 May; 324():138302. PubMed ID: 36871797. Abstract: The monitoring of hazardous pollutants in environmental fluids is one of main stretaegy in investigation of water and soil quality. Metal ions are one of main and dangerius materials in water sampels and one of the main causes of environmental problems. Therefore, many of environmental researchers focused on fabrication of highly sensitive sensor to ion hazardous pollutants environmental fluids. The encapsulation of 2D MXenes with other stable materials has proven to be an effective method for enhancing their stability and electrochemical properties. In this work, a sandwich-like nanocomposite structure, AuNPs/PPy/Ti3C2Tx, was designed and synthesized via a facile method of one-step layer-by-layer self-assembly. The morphology and structure of the prepared nanocomposites are characterized with various methods such as scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Ti3C2Tx as a substrate played a significant role in the synthesis and alignment of PPy and AuNPs growth. The nanocomposites have maximized the benefits of the inorganic AuNPs and organic PPy materials, enhancing their stability and electrochemical performance. Meanwhile, AuNPs have given the nanocomposite the ability to form covalent bonds with biomaterials via the Au-S bond. Thus, a novel electrochemical aptasensor was developed based on AuNPs/PPy/Ti3C2Tx for the sensitive and selective detection of Pb2+. It demonstrated a wide linear range from 5 × 10-14 to 1 × 10-8 M with a low LOD of 1 × 10-14 M (S/N = 3). Additionally, the developed aptasensor exhibited excellent selectivity and stability and successfully used to sensing of Pb2+ in environmental fluids such as NongFu Spring and tap water.[Abstract] [Full Text] [Related] [New Search]