These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cu-Doped Iron Oxide for the Efficient Electrocatalytic Nitrate Reduction Reaction. Author: Wang J, Wang Y, Cai C, Liu Y, Wu D, Wang M, Li M, Wei X, Shao M, Gu M. Journal: Nano Lett; 2023 Mar 08; 23(5):1897-1903. PubMed ID: 36883315. Abstract: The electrochemical nitrate reduction reaction (NO3RR) is a promising alternative synthetic route for sustainable ammonia (NH3) production, because it not only eliminates nitrate (NO3-) from water but also produces NH3 under mild operating conditions. However, owing to the complicated eight-electron reaction and the competition from the hydrogen evolution reaction, developing catalysts with high activities and Faradaic efficiencies (FEs) is highly imperative to improve the reaction performance. In this study, Cu-doped Fe3O4 flakes are fabricated and demonstrated to be excellent catalysts for electrochemical conversion of NO3- to NH3, with a maximum FE of ∼100% and an NH3 yield of 179.55 ± 16.37 mg h-1 mgcat-1 at -0.6 V vs RHE. Theoretical calculations reveal that doping the catalyst surface with Cu results in a more thermodynamically facile reaction. These results highlight the feasibility of promoting the NO3RR activity using heteroatom doping strategies.[Abstract] [Full Text] [Related] [New Search]