These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermal Decomposition Assisted Construction of Nano-Li3 N Sites Interface Layer Enabling Homogeneous Li Deposition.
    Author: Li H, Li L, Zheng J, Huang H, Zhang H, An B, Geng X, Sun C.
    Journal: ChemSusChem; 2023 Jul 07; 16(13):e202202220. PubMed ID: 36892939.
    Abstract:
    Lithium (Li) metal is a highly desirable anode for all-solid-state lithium-ion batteries (ASSLBs) due to its high theoretical capacity and being well matched with solid-state electrolytes. However, the practical applications of Li metal anode are hindered by the uneven Li metal plating/stripping behavior and poor contact between electrolyte and Li anode. Herein, a convenient and efficient strategy to construct the Li3 N-based interlayer between solid poly(ethylene oxide) (PEO) electrolyte and Li anode is proposed by in situ thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN) additive. The evolved Li3 N nanoparticles are capable of combining LiF, cyano derivatives and PEO electrolyte to form a buffer layer of about 0.9 μm during the cell cycle, which can buffer Li+ concentration and homogenize Li deposition. The Li||Li symmetric cells with Li3 N-based interlayer show excellent cycle stability at 0.2 mA cm-2 , which is at least 4 times longer cycle life than that of PEO electrolytes without Li3 N layer. This work provides a convenient strategy for designing interface engineering between solid-state polymer electrolyte and Li anode.
    [Abstract] [Full Text] [Related] [New Search]