These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: EEG Monitoring in Critically Ill Children: Establishing High-Yield Subgroups. Author: Fung FW, Parikh DS, Donnelly M, Jacobwitz M, Topjian AA, Xiao R, Abend NS. Journal: J Clin Neurophysiol; 2024 May 01; 41(4):305-311. PubMed ID: 36893385. Abstract: PURPOSE: Continuous EEG monitoring (CEEG) is increasingly used to identify electrographic seizures (ES) in critically ill children, but it is resource intense. We aimed to assess how patient stratification by known ES risk factors would impact CEEG utilization. METHODS: This was a prospective observational study of critically ill children with encephalopathy who underwent CEEG. We calculated the average CEEG duration required to identify a patient with ES for the full cohort and subgroups stratified by known ES risk factors. RESULTS: ES occurred in 345 of 1,399 patients (25%). For the full cohort, an average of 90 hours of CEEG would be required to identify 90% of patients with ES. If subgroups of patients were stratified by age, clinically evident seizures before CEEG initiation, and early EEG risk factors, then 20 to 1,046 hours of CEEG would be required to identify a patient with ES. Patients with clinically evident seizures before CEEG initiation and EEG risk factors present in the initial hour of CEEG required only 20 (<1 year) or 22 (≥1 year) hours of CEEG to identify a patient with ES. Conversely, patients with no clinically evident seizures before CEEG initiation and no EEG risk factors in the initial hour of CEEG required 405 (<1 year) or 1,046 (≥1 year) hours of CEEG to identify a patient with ES. Patients with clinically evident seizures before CEEG initiation or EEG risk factors in the initial hour of CEEG required 29 to 120 hours of CEEG to identify a patient with ES. CONCLUSIONS: Stratifying patients by clinical and EEG risk factors could identify high- and low-yield subgroups for CEEG by considering ES incidence, the duration of CEEG required to identify ES, and subgroup size. This approach may be critical for optimizing CEEG resource allocation.[Abstract] [Full Text] [Related] [New Search]