These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CircRBM23 regulates the switch between osteogenesis and adipogenesis of mesenchymal stem cells via sponging miR-338-3p.
    Author: Gao JW, Song MK, Wu DZ, Yan T, Zhao K, Huang YS, Chen XY, Tu C, Deng GX, Chen ZS, Zhang MM, Huang JL, Zhang C, Zhong ZM.
    Journal: Clin Sci (Lond); 2023 Mar 31; 137(6):495-510. PubMed ID: 36896931.
    Abstract:
    BACKGROUND: The disruption of the balance between osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) in bone marrow contributes to the adipocytes accumulation and bone loss, which leads to the development of osteoporosis (OP). The circular RNA (circRNA), circRBM23, was generated from the RNA binding motif protein 23 (RBM23) gene. It was reported that circRBM23 was down-regulated in OP patients, but it remains unknown whether its down-regulation is involved in the lineage switch of MSCs. OBJECTIVE: We aimed to explore the role and mechanism of circRBM23 in regulating the switch between osteogenic and adipogenic differentiation of MSCs. METHODS: The expression and function of circRBM23 in vitro were detected by qRT-PCR, alizarin red staining, and oil Red O staining. The interactions between circRBM23 and microRNA-338-3p (miR-338-3p) were analyzed by RNA pull-down assay, FISH, and dual-luciferase reporter assay. MSCs treated with lentivirus overexpression of circRBM23 was applied for both in vitro and in vivo experiments. RESULTS: CircRBM23 was expressed at lower levels in OP patients. Besides, circRBM23 was up-regulated during osteogenesis and down-regulated during adipogenesis of MSCs. CircRBM23 could promote the osteogenic differentiation but inhibit the adipogenic differentiation of MSCs. Mechanistically, circRBM23 acted as a sponge for microRNA-338-3p (miR-338-3p) to enhance the expression of RUNX family transcription factor 2 (RUNX2). CONCLUSIONS: Our research indicates that circRBM23 could promote the switch from adipogenic to osteogenic differentiation of MSCs via sponging miR-338-3p. It might improve the understanding of the lineage switch of MSCs and provide a potential target for diagnosing and treating OP.
    [Abstract] [Full Text] [Related] [New Search]