These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective effects of NF-κB inhibitor and continuous perfusion of pulmonary arteries on pulmonary injury in piglet models of deep hypothermia low flow.
    Author: Xie Y, Zhang R, Li J.
    Journal: Gen Physiol Biophys; 2023 Mar; 42(2):169-177. PubMed ID: 36896946.
    Abstract:
    Deep hypothermia with low flow perfusion (DHLF) is a common cardiopulmonary bypass (CPB) technique. The associated lung ischemia/reperfusion injury is a major cause of postoperative morbidity and mortality in patients undergoing DHLP; we aimed to investigate the effects of nuclear factor-κB (NF-κB) inhibitor pyrrolidine dithiocarbamate (PDTC) with continuous perfusion of pulmonary arteries (CPP) on DHLF-induced lung injury and the related molecular mechanisms. Twenty-four piglets were randomly divided into the DHLF (control), CPP (with DHLF), or CPP+PDTC (intravenous PDTC before CPP with DHLF) groups. Lung injury was evaluated by respiratory function measurement, lung immunohistochemistry, and serum levels of TNF, IL-8, IL-6, and NF-κB before CPB, at CPB completion, and at 1 h post-CPB. Western blot was used to detect NF-κB protein expression in lung tissues. After CPB, decreased parcial pressure of oxygen (PaO2) and increased parcial pressure of carbon dioxide (PaCO2) and serum levels of TNF, IL-8, IL-6, and NF-κB were observed in the DHLF group. Both CPP and CPP+PDTC groups showed better indices of lung function, decreased levels of TNF, IL-8, and IL-6, and less severe pulmonary edemas and injuries. PDTC with CPP further improved pulmonary function and mitigated pulmonary injury than did CPP alone. PDTC with CPP better attenuates DHLF-induced lung injury than does CPP alone.
    [Abstract] [Full Text] [Related] [New Search]