These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO2.
    Author: Wang Y, Guo F, Liao X, Li S, Yan Z, Zou F, Peng Q, Li G.
    Journal: Int J Biol Macromol; 2023 May 01; 236():123961. PubMed ID: 36898452.
    Abstract:
    It has been a great challenge to prepare high-expansion-ratio polylactide (PLA) foam with eminent thermal insulation and compression performance in packaging field. Herein, a naturally formed nanofiller halloysite nanotube (HNT) and stereocomplex (SC) crystallites were introduced into PLA with a supercritical CO2 foaming method to improve foaming behavior and physical properties. The compressive performance and thermal insulation properties of the obtained poly(L-lactic acid) (PLLA)/poly(D-lactic acid) (PDLA)/HNT composite foams were successfully investigated. At a HNT content of 1 wt%, the PLLA/PDLA/HNT blend foam with an expansion ratio of 36.7 folds showed a thermal conductivity as low as 30.60 mW/(m·K). Meanwhile, the compressive modulus of PLLA/PDLA/HNT foam was 115% higher than that of PLLA/PDLA foam without HNT. Moreover, the crystallinity of PLLA/PDLA/HNT foam was dramatically improved after annealing, thus the results showed that compressive modulus of the annealed foam increased by as high as 72%, while it still maintained good heat insulation with the thermal conductivity of 32.63 mW/(m·K). This work provides a green method for the preparation of biodegradable PLA foams with admirable heat resistance and mechanical performance.
    [Abstract] [Full Text] [Related] [New Search]