These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Research on Driving Obstacle Detection Technology in Foggy Weather Based on GCANet and Feature Fusion Training.
    Author: Liu Z, Zhao S, Wang X.
    Journal: Sensors (Basel); 2023 Mar 04; 23(5):. PubMed ID: 36905026.
    Abstract:
    The issues of the degradation of the visual sensor's image quality in foggy weather and the loss of information after defogging have brought great challenges to obstacle detection during autonomous driving. Therefore, this paper proposes a method for detecting driving obstacles in foggy weather. The driving obstacle detection in foggy weather was realized by combining the GCANet defogging algorithm with the detection algorithm-based edge and convolution feature fusion training, with a full consideration of the reasonable matching between the defogging algorithm and the detection algorithm on the basis of the characteristics of obvious target edge features after GCANet defogging. Based on the YOLOv5 network, the obstacle detection model is trained using clear day images and corresponding edge feature images to realize the fusion of edge features and convolution features, and to detect driving obstacles in a foggy traffic environment. Compared with the conventional training method, the method improves the mAP by 12% and recall by 9%. In contrast to conventional detection methods, this method can better identify the image edge information after defogging, which significantly enhances detection accuracy while ensuring time efficiency. This is of great practical significance for improving the safe perception of driving obstacles under adverse weather conditions, ensuring the safety of autonomous driving.
    [Abstract] [Full Text] [Related] [New Search]