These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of a continuous-time random-walk diffusion model for the differentiation of malignant and benign breast lesions and its association with Ki-67 expression. Author: Du M, Zou D, Gao P, Yang Z, Hou Y, Zheng L, Zhang N, Liu Y. Journal: NMR Biomed; 2023 Aug; 36(8):e4920. PubMed ID: 36912198. Abstract: The purpose of the current study was to evaluate the performance of a continuous-time random-walk (CTRW) diffusion model for differentiating malignant and benign breast lesions and to consider the potential association between CTRW parameters and the Ki-67 expression. Sixty-four patients (46.2 ± 11.4 years) with breast lesions (29 malignant and 35 benign) were evaluated with the CTRW model, intravoxel incoherent motion model, and diffusion-weighted imaging. Echo planar diffusion-weighted imaging was conducted using 13 b-values (0-3000 s/mm2 ). Three CTRW model parameters, including an anomalous diffusion coefficient Dm , and two parameters related to temporal and spatial diffusion heterogeneity, α and β, respectively, were obtained, and had MRI b-values of 0-3000 s/mm2 . Receiver operating characteristic (ROC) analysis was conducted to determine the sensitivity, specificity, and diagnostic accuracy of CTRW parameters for differentiating malignant from benign breast lesions. In malignant breast lesions, the CTRW parameters Dm , α, and β were significantly lower than the corresponding parameters of benign breast lesions. In the malignant breast lesion group, the CTRW parameter Dm was significantly lower in high Ki-67 expression than in low Ki-67 expression. In ROC analysis, the combination of CTRW parameters (Dm , α, β) demonstrated the highest area under the curve value (0.985) and diagnostic accuracy (94.23%) in differentiating malignant and benign breast lesions. The CTRW model effectively differentiated malignant from benign breast lesions. The CTRW diffusion model offers a new way for noninvasive assessment of breast malignancy and better understanding of the proliferation of malignant lesions.[Abstract] [Full Text] [Related] [New Search]