These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A rapid and convenient enzyme digestion method for the analysis of N-glycans using exoglycosidase-impregnated polyacrylamide gels fabricated in an automatic pipette tip. Author: Yamamoto S, Kato N, Wada M, Kinoshita M. Journal: Anal Sci; 2023 Jul; 39(7):1041-1046. PubMed ID: 36917436. Abstract: Efficient enzymatic digestion methods are critical for the characterization and identification of glycans. Glycan hydrolysis enzymes are widely utilized for the identification of glycoprotein or glycolipid glycans. The commonly utilized in solution glycan hydrolysis methods require several hours of incubation with enzymes for complete removal of their target monosaccharides. To develop an efficient and simple method for the rapid release of monosaccharides from glycoprotein glycans, we fabricated exoglycosidase-impregnated acrylamide gels in an automatic pipette tip. Our automated enzymatic reactors are based on the simple photochemical copolymerization of monomers comprising acrylamide and methylene-bis-acrylamide-containing enzymes with an azobis compound functioning as the photocatalytic initiator. After filling the tip of the automatic pipette with these acrylamide solutions, polymerization of the acrylamide gel solution was performed by irradiation with a LED. The immobilized enzymes maintained their activities in the pipette tips and their action was completed by fully automatic pipetting for 10 to 30 min. We utilized 8-aminopyrene-1, 3, 6-trisulfonic acid (APTS)-labeled glycans as a substrate and measured by capillary electrophoresis (CE) before and after enzymatic digestion. We demonstrated that this method exhibited quantitative enzymatic and specific cleavage of monosaccharides from glycoprotein glycans.[Abstract] [Full Text] [Related] [New Search]