These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A hybrid plasmonic nanoprobe using polyvinylpyrrolidone-capped bimetallic silver-gold nanostars for highly sensitive and reproducible solution-based SERS sensing.
    Author: Atta S, Vo-Dinh T.
    Journal: Analyst; 2023 Apr 11; 148(8):1786-1796. PubMed ID: 36920068.
    Abstract:
    Practical solution-based assays using surface-enhanced Raman spectroscopy (SERS) with portable instrumentation are currently of particular interest for rapid, efficient, and low-cost detection of analytes. However, current assays still have limited applicability due to their poor sensitivity and reproducibility. Herein, we demonstrate highly stable polyvinylpyrrolidone (PVP)-capped bimetallic silver-coated gold nanostars (BGNS-Ag-PVP) as a solution-based SERS nanoprobe that is capable of producing a strong, uniform, and reproducible SERS signal using a portable Raman instrument. The developed hybrid BGNS-Ag-PVP nanostructure shows tunable optical properties with improved SERS sensitivity and reproducibility as compared to gold nanostars. We have synthesized bimetallic nanoprobes BGNS-Ag-PVP having three different silvers, referred to as BGNS-Ag-PVP-1, BGNS-Ag-PVP-2, and BGNS-Ag-PVP-3. The SERS performance of BGNS-Ag-PVP was studied using methylene blue (Meb) as a probe molecule, and we achieved a detection limit of up to 10 nM indicating the high sensitivity of the solution-based SERS platform. The application of such bimetallic nanoparticles is demonstrated via the sensitive detection of the antithyroid drug methimazole (Mz) used as a model analyte system. We have achieved a detection limit of 1 nM for Mz spiked with human urine indicating three orders of magnitude lower than previously reported solution-based SERS detection methods. Furthermore, the SERS performance was reproducible over 3 months indicating excellent stability and repeatability. The result illustrates the potential of this solution-based SERS detection platform as a promising sensing tool for analytes such as illicit drugs, and biomarkers that have affinity to bind on nanoprobes.
    [Abstract] [Full Text] [Related] [New Search]