These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Suppression of neuroinflammation and α-synuclein oligomerization by rotarod walking exercise in subacute MPTP model of Parkinson's disease. Author: Leem YH, Park JS, Park JE, Kim DY, Kim HS. Journal: Neurochem Int; 2023 May; 165():105519. PubMed ID: 36931345. Abstract: Parkinson's disease (PD) belongs to an α-synucleinopathy and manifests motor dysfunction attributed to nigrostriatal dopaminergic degeneration. In clinical practice, the beneficial role of physical therapy such as motor skill learning training has been recognized in PD-linked motor defects. Nevertheless, the disease-modifying effects of motor skill learning training on PD-related pathology remain unclear. Here, we investigated the disease-modifying effects of rotarod walking exercise (RWE), a modality of motor skill learning training, in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In motor function and dopaminergic degeneration, RWE improved MPTP-induced deficits. In addition, RWE enhanced the expression of neurotrophic factors BDNF/GDNF, PGC1-α, Nurr1, and p-AMPK, thereby recovering dopaminergic neuronal cell death. Moreover, RWE inhibited microglial activation and the expression of pro-inflammatory markers, such as p-IκBα, iNOS, IL-1β, TNF-α, and cathepsin D, while elevating anti-inflammatory IL-10 and TGF-β. RWE also decreased oxidative stress markers in the substantia nigra, such as 4-HNE and 8-OHdG-positive cells, while increasing Nrf2-controlled antioxidant enzymes. Regarding the effect of RWE on α-synuclein, it reduced the monomer/oligomer forms of α-synuclein and phosphorylation at serine 129. Further mechanistic studies revealed that RWE suppressed the expression of matrix metalloproteinase-3 and p-GSK3β (Y216), which play key roles in α-synuclein aggregation. These data collectively suggest that inhibition of neuroinflammation and α-synuclein oligomerization by RWE may contribute to the improvement of PD pathology.[Abstract] [Full Text] [Related] [New Search]