These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mathematical Model for the Industrial SMTO Reactor with a SAPO-34 Catalyst. Author: Jiang H, Yuan L, Li D, Chen Y. Journal: ACS Omega; 2023 Mar 14; 8(10):9630-9643. PubMed ID: 36936341. Abstract: The methanol-to-olefins (MTO) technology creates a new non-oil route to produce light olefins. This paper reports a 14-lump MTO kinetic model for SAPO-34 catalyst, combined with the hydrodynamic model for the fast fluidized bed reactor of the industrial SMTO process. Selective deactivation is considered to quantify the product selectivity and abrupt catalytic activity change. Moreover, referring to the parallel compartment (PC) model, the activity difference between the circulating spent catalyst and the regenerated catalyst is considered. The validation results with the optimized kinetic parameters showed good agreement between the calculated value and the actual value. Sensitivity analysis of the industrial SMTO process was performed. According to the results, the established mathematical model can provide guidance for industrial production operations.[Abstract] [Full Text] [Related] [New Search]