These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization and analytical behavior of a morphine electrochemical sensor in environmental and biological samples based on graphite rod electrode using graphene/Co3O4 nanocomposite. Author: Wang C, Luo J, Dou H, Raise A, Ali MS, Fan W, Li Q. Journal: Chemosphere; 2023 Jun; 326():138451. PubMed ID: 36940827. Abstract: In this research, a new sensor based on graphene/Co3O4 (Gr/Co3O4) nanocomposite was employed for electrochemically determination of morphine (MOR). The modifier was synthesized with a simple hydrothermal technique and well characterized using X-ray difraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) tools. The modified graphite rod electrode (GRE) was revealed a high electrochemical catalytic activity for the MOR oxidation and employed for the electroanalysis of trace MOR concentration by means of differential pulse voltammetry (DPV) technique. At the optimum experimental factors, the resulting sensor offered a good response for MOR in the concentration range of 0.5-100.0 μM with a detection limit of 80 nM. In addition, the modified electrode demonstrated an acceptable selectivity, stability and reproducibility. This assay was also provided a valid platform for the detection of MOR in environmental and biological samples with acceptable recoveries and RSD in the range of 97.2-102.8% and 1.7-3.4%, respectively. Taking to the simplicity, low cost and short analysis time, this approach is suggested for clinical, environmental and forensic testing of MOR.[Abstract] [Full Text] [Related] [New Search]