These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortex. Author: Hablitz JJ. Journal: J Neurophysiol; 1987 Nov; 58(5):1052-65. PubMed ID: 3694244. Abstract: 1. Intra- and extracellular recording techniques were used to study epileptogenesis in in vitro slices of immature rat neocortex. Slices of sensorimotor cortex were prepared from animals 5-60 days old. Epileptiform activity was induced by bath application of 50 microM picrotoxin. 2. Convulsant-induced paroxysmal activity was observed only rarely in the youngest age group (5-7 days) and consisted of orthodromically evoked bursts of low-amplitude isolated discharges. This activity was labile and could be evoked only at long interstimulus intervals (greater than 10 s). 3. Extracellular recordings in slices from 8- to 15-day-old rats showed spontaneous epileptiform activity consisting of 10- to 30-s paroxysms of repetitive spike discharges superimposed on a 3- to 5-mV negative steady potential. This steady potential declined slightly during the course of the prolonged discharge and returned quickly to base line following the last spike discharge. 4. Laminar analysis of epileptiform activity in 8- to 15-day-old rats showed that the spike discharges were negative and superimposed on a positive slow wave in superficial cortical layers. At 100 micron below the pial surface, the slow potential reversed polarity and remained negative throughout the remainder of the cortex. Spike discharges reversed polarity 800 micron below the pial surface. 5. In intracellular recordings from slices obtained from 9- to 14-day-old animals, each paroxysm began with a sharply rising membrane depolarization (paroxysmal depolarizing shift, or PDS). A second PDS occurred before the cells repolarized to their resting potential. A series of PDSs then followed, superimposed on a sustained membrane depolarization. This was associated with a 33% decrease in input resistance. Afterhyperpolarizations (AHPs) following termination of the depolarization were low in amplitude or absent. 6. In the 16- to 30-day-old age group, extracellular recordings showed paroxysmal activity consisting of 3-10 initial spikes followed by a sustained, slow, negative-potential shift. This slow potential could be as great as 30 mV in amplitude and could last as long as 180 s. Paroxysmal events recurred spontaneously at intervals of 4-11 min. Spontaneous PDSs and slow, negative-potential shifts were not observed after 30 days of age, although PDSs could still be evoked by orthodromic stimulation. 7. Intracellular recordings in the 16- to 30-day-old group revealed that each paroxysmal event consisted of an initial period of increased synaptic activity and cellular firing, followed by a marked, long-lasting depolarization (LLD), culminating in an AHP.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]