These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diosmetin alleviates benzo[a]pyrene-exacerbated H1N1 influenza virus-induced acute lung injury and dysregulation of inflammation through modulation of the PPAR-γ-NF-κB/P38 MAPK signaling axis. Author: Zhou B, Wang L, Yang S, Liang Y, Zhang Y, Pan X, Li J. Journal: Food Funct; 2023 Apr 03; 14(7):3357-3378. PubMed ID: 36942763. Abstract: The severity of a viral respiratory illness was greatly exacerbated after exposure to a contaminant containing benzo[a]pyrene (B[a]P). Flavonoid-rich fruit intake has gained intense interest due to their health-promoting benefits for viral respiratory diseases, including influenza viruses. In our study, diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a naturally occurring hydroxylated methoxyflavone that is abundant in Citrus fruits, was explored for its effects on B[a]P-exacerbated H1N1 influenza virus-mediated inflammation and lung injury. Initially, in vivo results demonstrated that diosmetin protected against H1N1 virus-elicited acute lung injury. Simultaneously, H1N1 virus or B[a]P-stimulated A549 cells treated with diosmetin inhibited NF-κB and P-P38 activation, resulting in suppression of pro-inflammatory cytokines and apoptosis. Interestingly, diosmetin obviously promoted the expression of PPAR-γ as well as nuclear translocation of PPAR-γ, whereas, PPAR-γ inhibition by GW9662 weakened the inhibitory effects of diosmetin on H1N1 virus or B[a]P-mediated activation of NF-κB and P-P38, elevated expression of pro-inflammatory mediators as well as apoptosis. Furthermore, it was surprising to discover that mice exposed to both B[a]P and H1N1 viruses contributed to exacerbated acute lung injury, which were significantly ameliorated by diosmetin administration. In vitro studies showed that A549 cells with the combination of B[a]P and H1N1 virus augmented NF-κB and P-P38 activation, accompanied by higher levels of pro-inflammatory mediators and apoptosis, all of which were also significantly reduced by diosmetin treatment. Repressing PPAR-γ abrogated the inhibitory effects of diosmetin on B[a]P-exacerbated H1N1 virus-mediated NF-κB and P-P38 activation, inflammation, and apoptosis in A549 cells. Our findings suggest that diosmetin protected against B[a]P-exacerbated H1N1 virus-mediated lung injury by suppressing the exacerbation of NF-κB and P38 kinase activation in a PPAR-γ-dependent manner, suggesting potential benefits for B[a]P-exacerbated influenza-related illness therapeutics.[Abstract] [Full Text] [Related] [New Search]