These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Study of trace elements in stranded green turtles (Chelonia mydas), hawksbill turtles (Eretmochelys imbricata), and olive ridley turtles (Lepidochelys olivacea) in Gulf of Thailand and Andaman Sea.
    Author: Chomchat P, Kaewmong P, Sirinarumitr K, Sera K, Noda J, Sirinarumitr T.
    Journal: J Vet Med Sci; 2023 May 03; 85(5):557-564. PubMed ID: 36948643.
    Abstract:
    The purpose of this study was to survey and compare the amounts of elements in the serum of stranded sea turtles from the Gulf of Thailand and the Andaman Sea. The sea turtles from the Gulf of Thailand had Ca, Mg, P, S, Se, and Si concentrations significantly higher than those in sea turtles from the Andaman Sea. The Ni and Pb concentrations of sea turtles from the Gulf of Thailand was higher, but not significantly so, than in sea turtles from the Andaman Sea. Rb was detected only in sea turtles from the Gulf of Thailand. This may have been related to the industrial activities in Eastern Thailand. The concentration of Br in the sea turtles from the Andaman Sea were significantly higher than those in sea turtles from the Gulf of Thailand. The higher serum concentration of Cu in hawksbill (H) and olive ridley turtles (O) than in green turtles may be due to hemocyanin, as an important component in the blood of crustaceans. The higher Fe concentration in the serum from green turtles than for H and O may be due to chlorophyll, which is an important component of chloroplasts in eel grass. Co was not found in the serum of green turtles but was found in the serum of H and O. The monitoring of important elements in sea turtles may be used as a tool to assess the levels of pollution in marine ecosystems.
    [Abstract] [Full Text] [Related] [New Search]