These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Arsenite-induced cytotoxicity is regulated by poly-ADP ribose polymerase 1 activation and parthanatos in p53-deficient H1299 cells: The roles of autophagy and p53.
    Author: So KY, Oh SH.
    Journal: Biochem Biophys Res Commun; 2023 May 14; 656():78-85. PubMed ID: 36958258.
    Abstract:
    Arsenic is a double-edged sword metalloid since it is both an environmental carcinogen and a chemopreventive agent. Arsenic cytotoxicity can be dependent or independent of the tumor suppressor p53. However, the effects and the underlying molecular mechanisms of arsenic cytotoxicity in p53-deficient cells are still unclear. Here, we report a distinctive cell death mode via PARP-1 activation by arsenic in p53-deficient H1299 cells. H1299 (p53-/-) cells showed higher sensitivity to sodium arsenite (NaAR) than H460 (p53+/+) cells. H460 cells induced canonical apoptosis through caspase-dependent poly-ADP ribose polymerase 1 (PARP-1) cleavage and induced the expression of phospho-p53 and p21. However, H1299 cells induced poly-ADP-ribose (PAR) polymer accumulation and caspase-independent parthanatos, which was inhibited by 3-aminobenzamide (AB) and nicotinamide (NAM). Fractionation studies revealed the mitochondrial translocation of PAR polymers and nuclear translocation of the apoptosis-inducing factor (AIF). Although the exposure of NaAR to p53-overexpressing H1299 cells increased the PAR polymer levels, it inhibited parthanatos by inducing p21 and phospho-p53 expression. LC3-II and p62 accumulated in a NaAR dose- and exposure time-dependent manner, and this accumulation was further enhanced by autophagy inhibition, indicating that arsenic inhibits autophagic flux. p53 overexpression led to a decrease in the p62 levels, an increase in the LC3-II levels, and reduced parthanatos, indicating that arsenic induces p53-dependent functional autophagy. These results show that the NaAR-induced cytotoxicity in p53-deficient H1299 cells is regulated by PARP-1 activation-mediated parthanatos, which is promoted by autophagy inhibition. This suggests that PARP-1 activation could be used as an effective therapeutic approach for arsenic toxicity in p53-deficient cells.
    [Abstract] [Full Text] [Related] [New Search]