These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the B-BOX gene family in pepper and the role of CaBBX14 in defense response against Phytophthora capsici infection.
    Author: Zhou Y, Li Y, Yu T, Li J, Qiu X, Zhu C, Liu J, Dang F, Yang Y.
    Journal: Int J Biol Macromol; 2023 May 15; 237():124071. PubMed ID: 36958453.
    Abstract:
    The B-box (BBX) transcription factors are widely implicated in plant growth, development, and response to various biotic and abiotic stresses. However, their roles in the response of pepper to Phytophthora capsici infection (PCI) remain largely unexplored. Here, we report a total of 25 CaBBX genes with an uneven distribution were identified in pepper genome, and their characteristics, phylogenetic relationships, gene structures, conserved domains, and expression profiles were validated. CaBBXs were classified into five major clades (I to V) based on their phylogenetic relationships and conserved domains (presence of one or two B-box domains and a CCT domain). Gene duplication analysis demonstrated that there are two segmental duplication events but no tandem duplication event within pepper genome. Conserved motif and gene structure analysis revealed that the CaBBXs in the same clade have relatively similar motif arrangements and exon-intron patterns. Expression analysis revealed that the CaBBX genes have different expression levels in various tissues, and some of which were significantly induced during PCI and exogenous salicylic acid (SA) treatment. Among them, CaBBX14 displayed remarkable changed expression during PCI and SA treatment. The silencing of CaBBX14 increases pepper susceptibility to PCI, and also decreases in SA content and expression of pathogenesis-related (PR) and SA-related genes compared with control plants. Together, these findings advance our knowledge base on biological functions of CaBBXs in pepper during PCI through the SA signaling pathway, and we provide an example demonstrating that the potential of CaBBX14 to improve pepper resistance to PCI.
    [Abstract] [Full Text] [Related] [New Search]