These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Renal metabolism during four types of lactic acidosis in the dog including anoxia.
    Author: Lemieux G, Junco E, Perez R, Allignet E, Lemieux C, Aranda MR, Quintana FV.
    Journal: Can J Physiol Pharmacol; 1986 Feb; 64(2):169-75. PubMed ID: 3697834.
    Abstract:
    The present study was undertaken to evaluate the metabolic response of the kidney to lactic acidosis. Four types of lactic acidosis were induced in the dog: infusion of lactic acid, infusion of lactic acid with phenformin, administration of phenformin alone, and hypoxia by breathing 95% nitrogen. In all groups of animals, the same degree of acidosis was observed with plasma bicarbonate ranging from 12.8 to 14.9 mM. Plasma lactate concentration ranged from 3.0 to 8.1 mumol/mL. Renal ammoniagenesis failed to be influenced by lactic acidosis. As a matter of fact, it fell during anoxia. The extraction of glutamine by the kidney rose except during anoxia where it fell. The renal production of alanine rose during the infusion of lactic acid with and without phenformin. This coincided with the extraction of glutamine. The renal extraction of lactate rose in all forms of acidosis as well as the production of pyruvate. In the renal cortical tissue, the concentration of malate, pyruvate, and lactate rose. Alanine also rose except during anoxia. An important fall in cytosolic redox potential (NAD+/NADH lactate dehydrogenase) was observed, as well as a fall in mitochondrial redox (NAD+/NADH beta-hydroxybutyrate dehydrogenase). Lactate also accumulated in the liver and in the muscle. We propose that the kidney is unable to respond to lactic acidosis in terms of ammonia production and that this phenomenon is explained by transamination of pyruvate and glutamate into alanine and also by the observed fall in cytosolic redox potential. It is likely that renal gluconeogenesis is also inhibited and this is reflected by the rise in the concentration of malate in the kidney.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]