These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nav1.7 gain-of-function mutation I228M triggers age-dependent nociceptive insensitivity and C-LTMR dysregulation. Author: Wimalasena NK, Taub DG, Shim J, Hakim S, Kawaguchi R, Chen L, El-Rifai M, Geschwind DH, Dib-Hajj SD, Waxman SG, Woolf CJ. Journal: Exp Neurol; 2023 Jun; 364():114393. PubMed ID: 37003485. Abstract: Gain-of-function mutations in Scn9a, which encodes the peripheral sensory neuron-enriched voltage-gated sodium channel Nav1.7, cause paroxysmal extreme pain disorder (PEPD), inherited erythromelalgia (IEM), and small fiber neuropathy (SFN). Conversely, loss-of-function mutations in the gene are linked to congenital insensitivity to pain (CIP). These mutations are evidence for a link between altered sodium conductance and neuronal excitability leading to somatosensory aberrations, pain, or its loss. Our previous work in young adult mice with the Nav1.7 gain-of-function mutation, I228M, showed the expected DRG neuron hyperexcitability, but unexpectedly the mice had normal mechanical and thermal behavioral sensitivity. We now show that with aging both male and female mice with this mutation unexpectedly develop a profound insensitivity to noxious heat and cold, as well skin lesions that span the body. Electrophysiology demonstrates that, in contrast to young mice, aged I228M mouse DRGs have a profound loss of sodium conductance and changes in activation and slow inactivation dynamics, representing a loss-of-function. Through RNA sequencing we explored how these age-related changes may produce the phenotypic changes and found a striking and specific decrease in C-low threshold mechanoreceptor- (cLTMR) associated gene expression, suggesting a potential contribution of this DRG neuron subtype to Nav1.7 dysfunction phenotypes. A GOF mutation in a voltage-gated channel can therefore produce over a prolonged time, highly complex and unexpected alterations in the nervous system beyond excitability changes.[Abstract] [Full Text] [Related] [New Search]