These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A smartphone-based colorimetric assay using Au@Ag core-shell nanoparticles as the nanoprobes for visual tracing of fluvoxamine in biofluids as a common suicide drug. Author: Madani-Nejad E, Shokrollahi A, Shahdost-Fard F. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2023 Aug 05; 296():122665. PubMed ID: 37011439. Abstract: In the present study, bimetallic nanoparticles (NPs) consisting of gold (AuNPs) as the core and silver (AgNPs) as the shell have been synthesized and applied as the nanoprobe for detection of fluvoxamine (FXM) as the anti-depression drug. The physicochemical properties of the prepared citrate-capped Au@Ag core-shell NPs have been characterized by UV-Vis, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. The design of the smartphone-based colorimetric FXM sensor relies on the fast hydrolysis of FXM under alkaline conditions by producing of 2-(Aminooxy)ethanamine without any significant peak at 400-700 nm. The interaction of the resulted molecule with the nanoprobe induced a red shift in the longitudinal localized surface plasmon resonance (LSPR) peak of the nanoprobe, which was accompanied by sharp and vivid color variations in the solution. A linear relationship between the absorption signal increasing by FXM concentration increasing from 1 µM to 10 µM presented a simple, low cost and minimally instrumented format for FXM quantification with a limit of detection (LOD) of 100 nM. The collected visual data with the elegant colorimetric response of the nanoprobe in the presence of FXM from Indian red to light red violet and bluish-purple color offered simple detection of FXM with the naked eye. The satisfactory results of the proposed cost-effective sensor in the rapid assay of FXM in human serum, urine, saliva and pharmaceutical samples guarantee the potential of the nanoprobe for on-site and visual determination of FXM in actual samples. The proposed sensor as the first non-invasive FXM sensor for saliva sample analysis may hold great promise to provide the technical support for the rapid and valid detection of FXM for forensic medicine and clinical organizations.[Abstract] [Full Text] [Related] [New Search]