These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deuterated [18F]fluoroethyl tropane analogs as dopamine transporter probes: Synthesis and biological evaluation.
    Author: Li Q, Hu Q, Tang J, Fang Y, Liu C, Liu J, Qi M, Chen Z, Zhang L.
    Journal: Nucl Med Biol; 2023; 118-119():108334. PubMed ID: 37028197.
    Abstract:
    INTRODUCTION: The dopamine transporter (DAT) is vitally correlated with Parkinson's disease (PD) and other neurodegenerative diseases. Non-invasive imaging of DAT contributes to early diagnosis and monitoring of related diseases. Recently, we reported a deuterated [18F]fluoroethyl tropane analogue [18F]FECNT-d4 as a potential DAT PET imaging agent. The objective of this work was to extend the investigation by comparing four deuterated [18F]fluoroethyl tropane derivatives ([18F]2a-d) to develop metabolically stable DAT radioligands. METHODS: Four fluoroethyl substituted phenyl-tropane compounds 1a-d and deuterated compounds 2a-d were synthesized and their IC50 values to DAT were evaluated. The [18F]fluoroethyl ligands [18F]1a-d and [18F]2a-d were obtained from corresponding labeling precursors by one-step radio-labeling reactions and investigated in terms of lipophilicity and in vitro binding affinity studies. [18F]1d and [18F]2d were then selected for further evaluations by in vivo metabolism study, biodistribution, ex vivo autoradiography, and microPET imaging studies. RESULTS: [18F]1a-d and [18F]2a-d were obtained in radiochemical yield of 11-32 % with molar activities of 28-54 GBq/μmol. The 1d and 2d exhibited relatively high affinity to DAT (IC50: 1.9-2.1 nM). Ex vivo autoradiography and microPET studies showed that [18F]2d selectively localized on DAT-rich striatal regions and the specific signal could be blocked by DAT inhibitor. Biodistribution results showed that [18F]2d consistently exhibited a higher ratio of the target to non-target (striatum/cerebellum) than [18F]1d. Furthermore, metabolism study indicated that the in vivo metabolic stability of [18F]2d was superior to that of [18F]1d. CONCLUSION: Our findings suggested that the deuterated compound [18F]2d might be a potential probe for DAT PET imaging in the brain.
    [Abstract] [Full Text] [Related] [New Search]