These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differences in the metabolism and metabolic effects of the carbocyclic adenosine analogs, neplanocin A and aristeromycin. Author: Bennett LL, Allan PW, Rose LM, Comber RN, Secrist JA. Journal: Mol Pharmacol; 1986 Apr; 29(4):383-90. PubMed ID: 3702857. Abstract: Neplanocin A and aristeromycin are carbocyclic adenosine analogs that differ only in that neplanocin A contains a double bond in the carbocyclic ring, whereas this ring in aristeromycin is saturated. We have compared the metabolism and some of the metabolic effects of neplanocin A and synthetic (+/-)-aristeromycin (C-Ado) in murine leukemia L1210 cells in culture. C-Ado, as shown earlier, was not only converted to its own phosphates but also was metabolized to phosphates of carbocyclic guanosine. Both rapidly proliferating and slowly proliferating or resting cells phosphorylated C-Ado, but C-Ado was not converted to phosphates of carbocyclic guanosine in detectable amounts in cells whose growth had reached a plateau. When the metabolism of neplanocin and C-Ado was examined in the same experiment, both analogs were converted to the triphosphate analogs of ATP; no conversion of neplanocin A to the corresponding carbocyclic analogs of guanine nucleotides was detected, whereas C-Ado was converted to the carbocyclic analog of GTP in amounts that approximated the GTP pool. This difference in metabolism was associated with a marked difference in effects of the two analogs on the utilization of hypoxanthine and guanine which was inhibited by C-Ado but not by neplanocin. The failure of neplanocin A to be converted to analogs of guanine nucleotides apparently is the result of poor capacity of its monophosphate to serve as a substrate for AMP deaminase; the Vmax for deamination of neplanocin-5'-monophosphate by this enzyme was only 5% of that for C-Ado monophosphate. In contrast, neplanocin A was a better substrate than C-Ado for adenosine deaminase.[Abstract] [Full Text] [Related] [New Search]